

## ELEVATE Diversity, Equity & Inclusion (DEI) Committee at ASC 24

### **DEI Committee Goals**

- ☐ Focus on AWARENESS and ACTION in the areas of community outreach, allies and intervention method
- Expand on race and ethnicity factors, in addition to gender factors in DEI
- ☐ Understand and bring awareness to the impact of culture/country of origin on DEI practices in the superconductivity community



Ashleigh Francis
HTS R&D Lead
Commonwealth Fusion
Systems, MA USA



ELEVATE Chair

Anna Fox

Electrical Engineer

NIST, CO USA



DEI Committee Chair

Judy Wu

University Distinguished

Professor

University of Kansas, KS, USA



Sasha Ishmael
Senior Engineer
HTS Systems Engineering at
VEIR Inc. MA USA

## DEI Tutorials for the ASC 24 Conference Cycle

### I. Virtual Abstract Writing Workshop

Dec '23/Jan '24
Presented by Dr. Peter Lee

Goal – To guide participants towards
writing better quality abstracts

### **II. Virtual Manuscript Preparation Workshop**

Charlie Sanabria, Commonwealth Fusion

This virtual event will be offered to ASC 2024 attendees who are considering submitting a manuscript to be included in the special issue of the IEEE Transaction for Applied Superconductivity. The workshop will be held several weeks before the ASC 2024 conference covering the technical writing, and formality requirements as stated in the manuscript template, followed by a discussion to allow questions from the audience.

### III. Virtual Manuscript Review Workshop

Al Zeller, FSU/MSU

This virtual event will be offered to those who are interested in becoming reviewers of the special issue of IEEE Transaction for Applied Superconductivity for ASC 2024. The workshop aims to provide instructions and hands-on experiences in manuscript review and would be particularly attractive to young researchers and can provide valuable experiences for their career development.

### **IV. Short Courses**

Classes offered at ASC 2024 will be aimed at instructing attendees on different topics related to applied superconductivity, namely large scale, materials, and electronics applications. They are suitable for undergraduate or graduate students interested in superconducting applications and physicists or engineers working on superconductivity-related fields who wish to broaden their backgrounds.



# ASC 24: Virtual Abstract Writing Workshop

Workshop Instructor: Peter J. Lee
Applied Superconductivity Center, NHMFL, FSU, Tallahassee FL USA

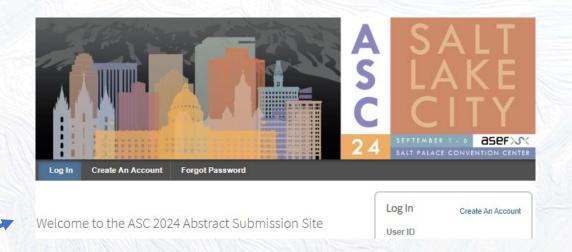
Organizer: Anna Fox

NIST, Quantum Voltage Project, Boulder, CO USA

### Course Outline

- Why do we need high-quality abstracts?
- How are abstracts submitted?
- How are abstracts reviewed?
- How is the conference program developed?
  - Orals vs. Posters
- What is the program committee looking for in an abstract?
- What makes for compelling abstract? Tools and Tips for Non-Native (and Native) English Speakers

## Why do we need high-quality abstracts?


- Abstracts are needed to provide the information required to build a high-quality scientific program
  - Can sessions be built around the abstracts?
    - Should it be an invited talk or poster?
    - What presentation platform is best?
- They serve as an important pre-qualification for submission to the conference issue of IEEE Trans. Applied Superconductivity
  - Is the subject matter relevant to applied superconductivity
  - Is this work of high enough quality?
    - (note that acceptance for presentation does not guarantee publication)
- This is an international conference so reviewed abstract acceptance is an important tool
  for potential attendees to obtain travel visas and funding for travel to the conference
- Conference attendees need to know that they can expect high quality of presentations

## Why do you need a high-quality abstract?

- Your abstract will be published as part of the program
  - Does it reflect the quality of your research?
  - Does it reflect the contributions of your colleagues and collaborators?
  - Will other attendees be able to find it by searching the program for key words?
- The abstract will help the program committee determine the best session and platform for your presentation
- Other conference attendees will use your abstract to determine whether to visit your session
- You may need a reviewed abstract acceptance to obtain a travel visa and/or funding for travel

## How are abstracts submitted?

- Abstract call (general information):
   https://www.appliedsuperconductivit
   y.org/asc2024/call-for-abstracts/
- Abstract submission: <a href="https://asc2024.abstractcentral.com/">https://asc2024.abstractcentral.com/</a>
  - You may need to disable your pop-up blocker for this site:
     asc2024.abstractcentral.com







## Setting up your account

- You will need a new account for ASC 24 (at least that was my experience)
  - I was also missing all the information I had entered for ASC
     22
- Note: A new User ID was generated for me

### Your Account is Incomplete

You will now be taken to the Modify Account section where you must update your account to use this site.

- · General Information: Primary Institution is missing.
- General Information: You have not answered the detail "Contact Information Confirmation".
- · Contact Information: Primary Country / Region is missing.
- Contact Information: Primary Zip is missing.
- Contact Information: Primary City is missing.
- Contact Information: Primary Address Line 1 is missing.
- Contact Information: Primary Phone 1 is missing.
- Privacy: Privacy acknowledgment is a required field

Ok

## Check Submission Categories

 Look at the submission categories ahead of time so you know what to submit under:

https://www.appliedsupercond uctivity.org/asc2024/wpcontent/uploads/sites/5/2023/ 12/ASC 2024 Abstract Sub mission Categories.pdf



#### ASC 2024 Abstract Submission Categories

| Main Categories                                                           | Sub-Cat#   | Sub-Category Title                                                                                           |
|---------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
| Electronics                                                               |            |                                                                                                              |
| E-11: Fabrication & packaging                                             | 11a        | Fabrication & packaging: Advanced/novel                                                                      |
|                                                                           | 11b<br>11c | Fabrication & packaging: HTS                                                                                 |
|                                                                           |            | Fabrication & packaging: LTS                                                                                 |
|                                                                           | 11d        | Fabrication & packaging: Packaging and multi-chip modules                                                    |
|                                                                           | 11e        | Fabrication & packaging: Wires and tapes                                                                     |
| E-12: System integration, measurement and standards                       | 12a        | System integration etc.: Input/output and data links                                                         |
|                                                                           | 12b        | System integration etc.: Metrology and standards                                                             |
| E 40. Dishallania and assessed                                            | 12e        | System integration etc.: Testing and instrumentation                                                         |
| E-13: Digital logic and memory                                            | 13a<br>13b | Digital logic & memory: Architectures<br>Digital logic & memory: EDA tools                                   |
|                                                                           | 13e        | Digital logic & memory: EUX tools Digital logic & memory: Flux trapping                                      |
|                                                                           | 13d        | Digital logic & memory: Prox eapping Digital logic & memory: Logic                                           |
|                                                                           | 13e        | Digital logic & memory: Memory                                                                               |
| E-15: Microwave devices, components and detectors (mixers)                | 15a        | Microwave: Active devices                                                                                    |
| E-13. Micromane devices, components and desectors (mixers)                | 15b        | Microwave: Cavities and applications                                                                         |
|                                                                           | 15c        | Microwave: Devices and components                                                                            |
|                                                                           | 15d        | Microwave: Filters and antennas                                                                              |
|                                                                           | 15e        | Microwave: Non-equilibrium detectors and mixers                                                              |
|                                                                           | 151        | Microwave: Quantum information processing                                                                    |
|                                                                           | 15g        | Microwave: Quantum mormation processing Microwave: Various magnetic applications                             |
| E-16: SQUIDs                                                              | 16a        | SQUIDs: Applications                                                                                         |
|                                                                           | 16b        | SQUIDs: Devices and circuits                                                                                 |
| E-17: Quantum systems                                                     | 178        | Quantum systems: Computation                                                                                 |
|                                                                           | 17b        | Quantum systems: Sensing and networking                                                                      |
|                                                                           | 17e        | Quantum systems: Control and readout electronics                                                             |
|                                                                           | 17d        | Quantum systems: Fabrication, packaging, and scalable infrastructure                                         |
|                                                                           | 17e        | Quantum systems: Hybrid or novel quantum systems                                                             |
| E-18: Novel electronics: mesoscopics, topological circuits, metamaterials | 18a        | Novel electronics                                                                                            |
| E-19: Nanowire single-photon detectors                                    | 19a        | Nanowire single-photon detectors: Applications                                                               |
|                                                                           | 19b        | Nanowire single-photon detectors: Device physics and theory                                                  |
|                                                                           | 19c        | Nanowire single-photon detectors: Fabrication and materials                                                  |
|                                                                           | 19d        | Nanowire single-photon detectors: Measurement and readout                                                    |
| E-20: Superconducting detectors                                           | 20a        | SC Detectors: Analysis and calibration                                                                       |
|                                                                           | 206        | SC Detectors: Fabrication                                                                                    |
|                                                                           | 20e        | SC Detectors: Detector physics                                                                               |
|                                                                           | 20d        | SC Detectors: Enabling technologies                                                                          |
|                                                                           | 20e        | SC Detectors: Instruments and applications                                                                   |
|                                                                           | 20f        | SC Detectors: Kinetic inductance detectors and components                                                    |
|                                                                           | 20g        | SC Detectors: Readout techniques                                                                             |
| E-21: Al/ML as a tool for Electronics                                     | 21a        | AI/ML as a tool for Electronics                                                                              |
| Large Scale: Large Systems                                                |            |                                                                                                              |
| L-31: Large detector arrays (non-electronic)                              | 31a        | Large detector arrays (non-electronic)                                                                       |
| L-35: Superconducting RF                                                  | 35a        | Superconducting RF cavities (non-materials)                                                                  |
|                                                                           | 35b        | Superconducting RF systems                                                                                   |
| L-36: Levitation, transportation, and propulsion                          | 38a        | Magnetic levitation and bearings                                                                             |
|                                                                           | 36b        | Propulsion applications                                                                                      |
| No. 14                                                                    | 38c        | Motors, generators, and rotating machines for propulsion                                                     |
| L-37: Magnetic separation and other applications                          | 37a        | Magnetic separation                                                                                          |
|                                                                           | 37b        | Induction heating                                                                                            |
|                                                                           | 37e        | Various magnetic applications                                                                                |
|                                                                           | 37d        | Novel large scale devices                                                                                    |
| L-38: Cryogenics for superconducting devices and system integration       | 38a        | Cryogenics for superconducting devices and system integration                                                |
| Large Scale: Superconducting Magnets                                      | Latin      | Accelerator monact Design and make in techniques                                                             |
| 40-41: Accelerator, wiggler, undulator, special magnets                   | 40a        | Accelerator magnet: Design and analysis techniques                                                           |
|                                                                           | 40b        | Accelerator magnet: Systems                                                                                  |
|                                                                           |            | Accelerator magnets: AC loss and magnetization<br>Accelerator magnets: HTS                                   |
|                                                                           |            | Accelerator magnets: HTS Accelerator magnets: LTS                                                            |
|                                                                           |            | Accelerator magnets: C15 Accelerator magnets: Quench detection and protection                                |
|                                                                           |            | Accelerator magnets: Quanch detection and protection Accelerator magnets: Testing and measurement techniques |
|                                                                           |            |                                                                                                              |
|                                                                           |            | Accelerator magnets: Other Detector and corrector magnets                                                    |
|                                                                           |            |                                                                                                              |
|                                                                           |            |                                                                                                              |
|                                                                           | 40j        | Other superconducting accelerator magnet technologies                                                        |
|                                                                           | 41a        | Wigglers, undulators, special magnets                                                                        |
|                                                                           |            |                                                                                                              |

ASC 2024 Abstract Submission Categories

| L-42: Fusion: Magnets, cables and conductors | 42a | Conductors and cables for fusion: HTS       |
|----------------------------------------------|-----|---------------------------------------------|
|                                              | 42b | Conductors and cables for fusion: LTS       |
|                                              | 42e | Fusion systems and system testing/operation |
|                                              | 42d | Magnets for fusion system: HTS              |
|                                              | 42e | Magnets for fusion system: LTS              |
| L-43: Very high field and NMR magneta        | 43a | NMR magnets: LTS                            |
|                                              | 43b | NMR magnets: HTS/hybrid                     |
|                                              | 43c | Hybrid magnets: LTS/HTS                     |
|                                              | 43d | HTS magnets (very high field)               |

## What topics are acceptable?

- Applications of superconductors in Quantum Systems Quantum Computing / Communications / Sensing. The most promising modalities for implementing the relatively new field of quantum information involve superconducting devices, superconducting qubits, and/or superconducting readout systems. ASC invites submissions related to Quantum Systems that include superconductors. Device, design, packaging, system related topics are included and solicited.
- 2. Advances in the science of superconductors relevant to applications. Abstracts describing basic materials, films, or artificial structures should discuss properties interesting for applications, forms used in applications such as elementary conductors or simple circuits, or structural or compositional aspects that potentially lead to use in a device. Theoretical content should address topics relevant to applications, operations, or behavior of practical systems. Experimental studies, test methods, and data should relate to aspects of superconductivity important for applications in some way.
- 3. Advances in superconducting technology. Abstracts may describe concepts, design, modelling, manufacturing or fabrication, and operation or implementation of superconducting devices or components. Extensions of conventional technologies by the use of superconductivity should emphasize the role of superconductivity in the device or component. Abstracts may describe non-superconducting technologies that are required for the use of superconductors, such as insulation, provided that the primary discussion is focused on applied superconductivity.
- 4. Integration of superconducting devices and components in systems. Abstracts may discuss sub-systems or full systems comprised of components such as cables, magnets, detectors, circuits, and so on. Discussions may include components and processes that support superconducting devices, such as cryogenic systems supporting superconducting magnets. Studies of power devices, transportation systems, electricity transmission, energy storage, and other systems that use superconducting components should emphasize the role of superconductivity or the particular aspects of superconductivity important to the system or application. Cryogenics, non-superconducting materials at cryogenic temperature, power supplies, power electronics, and other ancillary topics may be considered *provided that* the connection to applied superconductivity is clear. Also, abstracts may describe facilities to verify operation of components, report system tests, or describe the status of superconducting systems and projects using superconducting components.







## Visa Applicants: Invitation Letters

- Letters of invitation for visa application will be sent out after the Program Meeting in February 2024
  - Once the Program Committee has accepted the abstract the invitation can be sent out. This should allow over 6 months for the visa application.

### Visa Resources

### **Visa Requirements**

Conference participants should familiarize themselves with visa requirements well in advance of the conferences. The 2024 Applied Superconductivity Conference (ASC'22) organizers encourage you to apply for your visa as early as possible, at least 3 to 4 months prior to this conference.

Please note: Some consulates may have backlogs in scheduling visa interviews. Visa Wait Times for Interview Appointments and Processing by City are available here.

ASC'24 CANNOT INTERVENE with U.S. Embassies abroad or the State Department on behalf of any participant. However, if you need a personal letter of invitation to attend the Conference, please contact **Centennial Conferences** and provide the following information:

Full Name

https://www.appliedsuperconductivity.org/asc2024/travel-visa/#Visa

Resources for determining if you need a visa and if so, what type, can be found on the ASC 24 travel page

The letter we provide you will reflect your status as known to us at the time (abstract accepted and a place in the program assigned; paid registration received, etc.). The letter does not imply financial support from the conference. Your letter will be **EMAILED** to you. A hard copy will be faxed and mailed to you via regular airmail only if requested. Any fees for sending letters via express mail must be paid for by the requester.

Please note that letters of invitation can only be sent to presenting authors of accepted abstracts or registered and paid attendees and exhibitors.

The majority of oversees attendees will be eligible for the "Visa Waiver Program". Details can be found here.

#### IMPORTANT WEBSITES

- International Visitors Office
- Visa Waiver Program
- Visa Wizard
- Visa FAQ
- U.S. Customs and Border Protection
- U.S. Visa Policy
- US Embassies
- Office of Biometric Identity Management
- Centers for Disease Control and Prevention Travelers' Health
- World Health Organization Travel and Health

#### PROBLEMS

If any problems are encountered in the visa applications or in the admission process, please submit your report to the International Visitors Office by completing the questionnaire on their website. To help the International Visitors Office to identify you as a participant, please be sure to include the 2024 Applied Superconductivity Conference (ASC'24) in the "Purpose of Visit" field on the questionnaire. The International Visitors Office can inquire at the Department of State about the status of visa applications that have been pending for more than 21 days.

#### DISCLAIMER

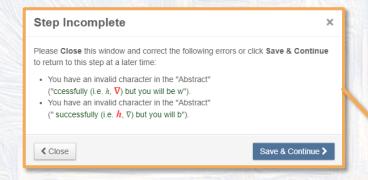
Please note that this information is given in good faith but that the regulations may change, and the only authoritative sources of information are the U.S. Government websites.

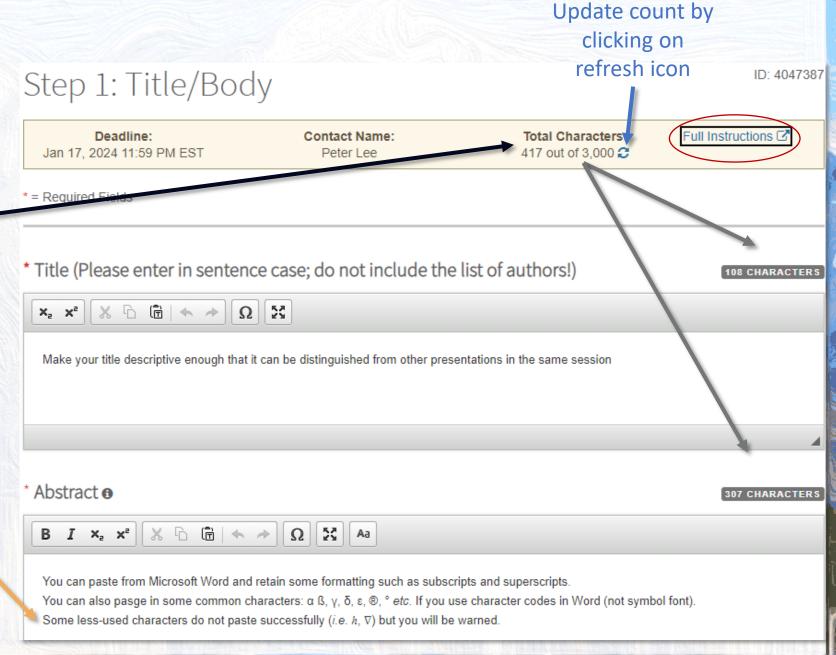
### The Rules

Title and Abstract Content/Body: 3000 characters

Acknowledgment: 300 characters

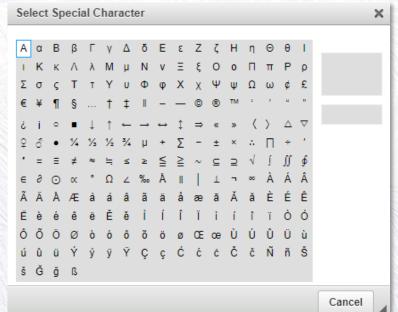
Submitted abstracts will be reviewed according to the following criteria:


- Does the abstract contain enough information?
- Is the abstract about applied superconductivity?
- Is the abstract scientifically meaningful or otherwise descriptive of a substantial development in the ASC community?
- Does the abstract align with one of the submission categories?
- All authors designated as speaker/presenting author on the submitted abstract must register for the conference and be present in Salt Lake City.

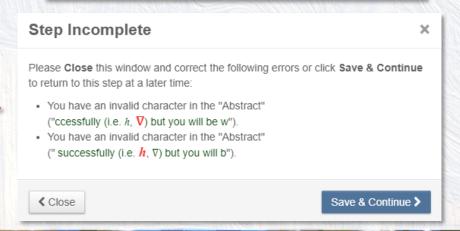

Abstract changes can be made until the original submission deadline (January 17, 2024).

Presentations are either oral or poster. The Program Committee reserves the right to change the type of presentation from that preferred by the author to accommodate limitations on meeting space and other constraints.

## The rules:


- Title + Abstract
   Content/Body: Maximum of 3000 characters
- Acknowledgment: Maximum of 300 characters
- Your title and subject matter must stay the same for your presentation





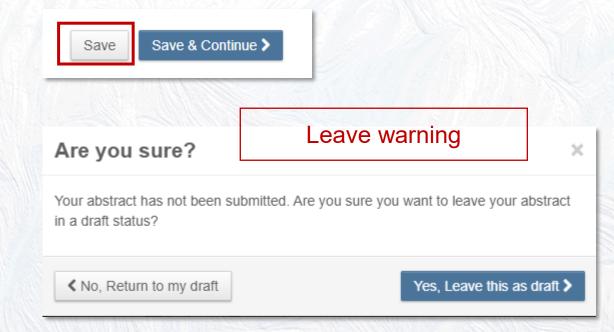

Write your title and abstract in your preferred word processor first

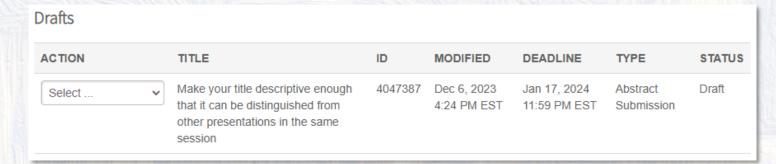
- Writing your abstract in your word processor provides you with full access to spell checking and basic grammar tools or add-on grammar tools like Grammarly
- Character-code characters (not symbol font) can be copy-and-pasted directly
  - If a character does not work, you will be warned:



Characters
that you can
paste are
also those
shown in the
symbol drop
down on the
submission
page




## New character option: Optional File Upload


- ASC 24 wishes to accommodate authors for whom written English does not properly
  capture spelling or pronunciation of names and affiliations. Here, authors may also upload
  a PDF file containing the list of authors and institutions written in a native font. The file
  should be created with all fonts embedded. This file will not be reviewed by the program
  committee, and all information is the responsibility of the author. This file with native font
  will be available for viewing via the online Itinerary planner once the technical program is
  finalized.
- Note: Step 1 of the abstract submission must be completed first

| PDF         |  |                           |  |
|-------------|--|---------------------------|--|
| Select File |  |                           |  |
| FILE NAME   |  | UPLOAD                    |  |
|             |  | ₫ 2. Upload Selected File |  |

## You can save during your session and return later

- Save (at the bottom of the web page) your draft so you do not lose any edits.
- You can return to your draft abstract later to complete it
- Your editable drafts can be found at the bottom of the submission page





## Oral vs Poster



 Oral presentation slots are always limited; if you select Oral presentation, you will be asked to justify this choice:

Oral Presentation Type Preference

If you selected Oral for your presentation type preference, please explain why below.

### Orals vs Posters

### **Oral Presentation**

- Pros
  - Visibility/Perceived Prestige
  - Invited talks more common than invited posters
- Cons
  - Very limited interaction with attendees – no time for any indepth conversation

### Poster Presentation

- Pros
  - Excellent interaction with attendees (especially for in-person conferences)
- Cons
  - Transporting physical poster (they can be printed locally)
  - Seeing other posters in the session is more difficult (workarounds are typically built into the program)

Your selection has no impact on abstract acceptance

## Letter of Invitation

 If you need a letter of invitation for visa application or institutional needs make sure you check yes here:

### \* Letter of Invitation

A letter of invitation will be emailed in PDF format to the designated presenting author only. If the submitting author is not the presenting author but requires a letter of invitation, please send your request for a letter to Centennial Conferences at asc@centennialconferences.com.

Will the presenting author require a letter of invitation?



○ No

## Abstract Changes & Withdrawals

- Abstracts may be modified until the deadline using the abstract submission site unless the submission has already been reviewed by the Program Committee
- If your abstract has already been reviewed and after the submission deadline, abstract content changes, i.e.,
  modification of title or body, will be sent to the Program Committee for approval. Corrections, i.e., spelling or grammar,
  or author changes such as designation of different presenting author, changes to affiliations, changes to names, etc.,
  can be completed without referral to the Program Committee. In either case, please contact Centennial Conferences by
  e-mail and specify whether you need a change or a correction in the e-mail subject line along with the Control ID
- Except for presenting author changes, modifications will be accepted until August 1, 2024

#### **Abstract Withdrawals**

- Abstracts can be withdrawn via the abstract submission site through the abstract submission deadline
- Withdrawal requests after closing of the submission site must be sent to Centennial Conferences by e-mail. Please be sure to include your Control ID

## How are abstracts reviewed 1: Online

- All abstracts are reviewed online before the Program Meeting
  - Abstracts are assigned to the relevant experts in the Program Committee
  - All abstracts receive at least two reviews
  - Reviewers in the online process make recommendations but final approval and sorting is performed at the Program Meeting
  - Reviewers will make recommendations for invited papers, orals, posters and rejections. They will also suggest possible focused sessions based on the papers that they review
    - If the abstract has been submitted in the wrong category, they will make a recommendation to move it to the correct category


## How are abstracts reviewed 2: Program Meeting

- At the Program Meeting all the abstracts will be sorted into sessions
- A 1-page printout of each abstract is provided includes the rating and comments of the online reviews
- Final rejection decisions will be made at the Program Meeting



## **Program Meeting Goals**

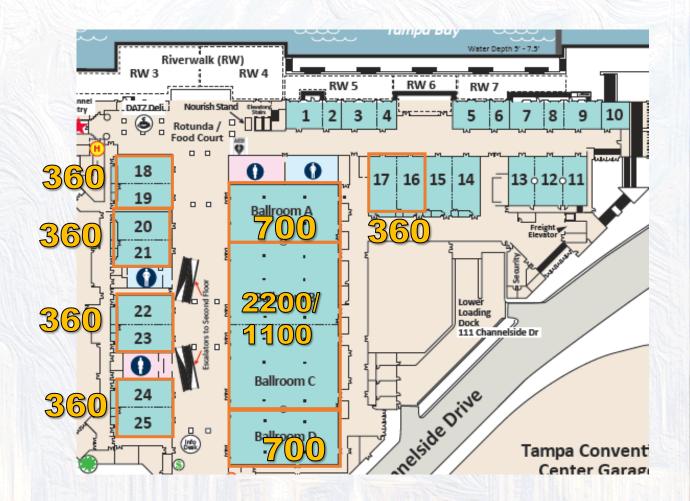
- Build a functioning and exciting conference program
- Subdivide coherently the >1500 reviewed abstracts into
  - Oral / Poster sessions spread over 5 conference days
- Arrange sessions to reduce overlap between topics
- Create sessions:
  - Titles, suggest moderators



## Typical breakdown of sessions

- 2020 target example
- Note that Large
   Scale has a lower
   target % or oral slots
   – this is to avoid too
   many overlapping
   oral sessions

|             | Parallel | Total |     |        |
|-------------|----------|-------|-----|--------|
|             | Sessions | Slots |     | % Oral |
| Electronics | 3        | 201   | 399 | 50.4   |
| Large Scale | 4        | 268   | 825 | 32.5   |
| Materials   | 2        | 134   | 295 | 45.4   |


There are always more requests for oral presentations than there are slots available If you select "Poster" as your presentation the committee will *not* put your presentation in an oral session unless they check with your first If you select "Oral" the committee may put your presentation in an oral or poster session

## Rooms will have different capacities

Tampa Convention Center example (original in-person ASC 2020)

| Plenary         | Ballroom B-C   | 2200 |
|-----------------|----------------|------|
| (splitting room | for two orals) |      |
| Oral 1          | Ballroom A     | 700  |
| Oral 2          | Ballroom B     | 1100 |
| Oral 3          | Ballroom C     | 1100 |
| Oral 4          | Ballroom D     | 700  |
| Oral 5          | Mtg Rm 24/25   | 360  |
| Oral 6          | Mtg Rm 22/23   | 360  |
| Oral 7          | Mtg Rm 20/21   | 360  |
| Oral 8          | Mtg Rm 18/19   | 360  |
| Oral 9          | Mtg Rm 16/17   | 360  |
|                 |                |      |

Oral sessions will also be organized according to the expected number of session attendees.



## What is the program committee looking for in an abstract?

- Relevance to applied superconductivity
- Sufficient information to be able to place the presentation with similar papers
- Evidence of quality
  - Does the abstract make technical sense?
  - Are interesting results or a useful theoretical advance going to be presented?
  - What is the likely impact on the field?

## What makes for compelling abstract?

- In 3000\* characters there should be ample room to:
  - Explain why this work is important for advancing applied superconductivity
  - Be interesting to the attendees of the conference
  - Contain significant results or applications that can be understood within the context of previous work

\*Pre-2014, when full program books were printed, the limits used to be 1500-2000 characters, this range is a good target

### Avoid:

- Making generalization and conclusions that this work cannot support
- Unnecessary details that do not aid understanding the work
- Repetition (make sure it is well-organized)

## A Model Abstract

If you
 address each
 of these 6
 goals, you
 should be
 good to go!

Note this example is only ~1600 characters

**Title: 1.** Make your title descriptive enough that it can be distinguished from other presentations in the same session

Abstract: 2. Start your abstract with an introduction that explains the relevance and importance of this work to applied superconductivity (the most common reason for an abstract being rejected is that it is not within the scope of the conference). sure that it is well written so that the organizers have confidence in the likely quality of your conference presentation. Make good use of tools such as Grammarly to help improve the clarity and readability of the abstract. It should be clear from this section what the major goals of this work are. **4**. Follow the introduction with *brief* experimental details that cover the materials and techniques being used in sufficient detail that the program committee can judge the quality of the work being carried out (for theoretical work this would be more context related). For experiments, it is important to follow this with results even if the experiment is ongoing (without demonstrating that important results have already been obtained limits the basis on which the abstract can be accepted and there will be the concern that the presentation may be withdrawn later if no new results have been obtained, requiring late changes to the advertised program). **5**. End your abstract with conclusions drawn from these results. Make sure that you explain their significance in a way that demonstrates your understanding of the topic. **6**. Finally make sure to check your abstract for errors (remember that your abstract will be published online). Have your co-authors check the abstract before submission; if you have no co-authors have someone else proof-read your abstract.

## A bad abstract

What kind of wire is this? Attendees working on similar material may not find you abstract in the program if you do not include key search terms

Is this a scientific research article or a sales pitch? What is the application?

More detail required.

Unnecessary experimental detail that looks like it was copied from a 
brochure or manual

Actual values necessary to support this statement

What kind of conventional processing?

Weasel words will invite skepticism •

Overly broad statement that has not been presented with supporting data

Improved wire performance by advanced processing

We have invented a new process for improving wire performance. High quality results were obtained for a variety of wires. We tested the wires using a Quantum Design PPMS VersaCryoLab II cryogen-free cryocooler-based material characterization platform with a temperature range of 50 – 400K. The wire microstructures were examined using a VK-X9000 will 3D-laser microstructure that automatically scan and measure samples with a 3000 pixel frame resolution.

The wires showed better results in all cases than conventional processing, had a higher yield and longer piece length while having a reasonable cost. The new technique will produce better results in all circumstances.

## Writing resources and tips from non-native English speakers at FSU

- A popular resource for assisting writing was <u>Grammarly</u>
  - Free and paid premium version available
  - Can integrate into a browser, MS Word, MS PowerPoint, etc.
  - Can combine Google Translate for the translation, and then use Grammarly to correct
  - Will rate the "friendliness" of your text, along with clarity
  - Useful for native English speakers as well to discern passive vs. active language
- If not sure about a word, look up synonyms of that word to see if you are using the right word
  - Especially for words that have multiple usages/similar sounds (ex. Break (break apart), break (rest), brake (stop your car), etc.)
  - Be aware this can also depend on your knowledge of the meaning of the synonyms
- If unsure about a phrase, step away for 30+ mins and come back to review it later—it may become clearer with fresh eyes
- Ask a friend/colleague who is a native English speaker to review

## **ELEVATE:** Paper writing



- Virtual Manuscript Preparation Workshop featuring Charlie Sanabria. This virtual
  event will be offered to ASC 2024 attendees who are considering submitting a
  manuscript to be included in the special issue of the IEEE Transaction for Applied
  Superconductivity. The workshop will be held several weeks before the ASC 2024
  conference covering the technical writing, and formality requirements as stated in the
  manuscript template, followed by a discussion to allow questions from the audience.
  - Event date and time to be announced shortly.
- Virtual Manuscript Review Workshop featuring Al Zeller. This virtual event will be
  offered to those who are interested in becoming reviewers of the special issue of IEEE
  Transaction for Applied Superconductivity for ASC 2024. The workshop aims to
  provide instructions and hands-on experiences in manuscript review and would be
  particularly attractive to young researchers and can provide valuable experiences for
  their career development.
  - Event date and time to be announced shortly

## Wrap-up







- Any questions?
- Let us know what else you would like to see in the future
- Please fill out the feedback form that you will receive after the workshop, it will be important for improving the next version

Thanks to Abiola Temidayo Oloye, Ashleigh Francis, Sasha Ishmael, and Al Zeller for their suggestions and contributions

Conference Management: Centennial Conferences